inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Stephan Bremm and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (In–N) = 0.004 Å R factor = 0.028 wR factor = 0.073 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triamminetrichloroindium(III), [InCl₃(NH₃)₃]

The triammoniate of indium(III) chloride has been obtained as single crystals from the reaction of indium metal and ammonium chloride in a sealed Monel metal container. It crystallizes as a salt with $[In(NH_3)_4Cl_2]^+$ and $[In(NH_3)_2Cl_4]^-$ ions, both of which lie on inversion centers.

Received 6 May 2003 Accepted 17 June 2003 Online 17 July 2003

Comment

The triammoniate of indium(III) chloride, $In(NH_3)_3Cl_3$, crystallizes as a salt containing the complex ions $[In(NH_3)_4Cl_2]^+$ and $[In(NH_3)_2Cl_4]^-$. Both the cations and anions are distorted octahedra. In the cations, In^{3+} is surrounded equatorially by four ammine ligands, with In-N distances around 2.25 Å, and axially by two chloride ligands, at distances of 2.51 Å. In the anions, In^{3+} is surrounded equatorially by four chloride ligands, with In-Cl distances around 2.53 Å, and axially by two ammine ligands, at distances of 2.23 Å (precise bond lengths are given in Table 1). The complex cations and anions are arranged in a pseudo-body-centered fashion. The crystal structure of the analogous complex $Al(NH_3)_3Cl_3$ was first determined by Jacobs & Nöcker (1992, 1993) and was recently redetermined by Bremm & Meyer (2001).

Experimental

Ammonium chloride, NH₄Cl, and indium metal were sealed under inert conditions (argon dry-box) in 1:1 to 3:1 molar ratios in Monel metal ($Cu_{32}Ni_{68}$) containers which were jacketed with silica ampoules. The reaction mixtures were heated for 4–7 d at temperatures between 673 and 773 K. The ampoules were opened in a drybox. Colourless single crystals of In(NH₃)₃Cl₃ were thus obtained.

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 The unit cell of In(NH₃)₃Cl₃.

Figure 2

The $[In(NH_3)_4Cl_2]^+$ and $[In(NH_3)_2Cl_4]^-$ ions in $In(NH_3)_3Cl_3$. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

$[In(NH_3)_4Cl_2]^+ \cdot [In(NH_3)_2Cl_4]^-$	Z = 1	
$M_r = 544.54$	$D_x = 2.327 \text{ Mg m}^{-3}$	r
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation	r
a = 5.8652 (15) Å	Cell parameters from 1719	r n
b = 6.8130 (18) Å	reflections	P
c = 9.794 (2) Å	$\theta = 1.9-26^{\circ}$	n
$\alpha = 86.14 (3)^{\circ}$	$\mu = 3.98 \text{ mm}^{-1}$	te
$\beta = 86.68 (3)^{\circ}$	T = 293 (2) K	
$\gamma = 85.26 \ (3)^{\circ}$	Irregular, colourless	
$V = 388.59 (17) \text{ Å}^3$	$0.25 \times 0.15 \times 0.10 \text{ mm}$	

 $R_{\rm int} = 0.023$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -6 \rightarrow 7$

 $k = -8 \rightarrow 7$

 $l = -12 \rightarrow 12$

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: none 1719 measured reflections 1234 independent reflections 1049 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.073$ S = 0.961234 reflections 68 parameters H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0559P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.75 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Extinction \ correction: \ SHELXL97} \\ &{\rm Extinction \ coefficient: \ 0.023 \ (3)} \end{split}$$

Table 1		
Hydrogen-bonding geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl2^{i}$ $N1 - H1B \cdots Cl2^{ii}$	0.89 0.89	2.61 2.74	3.415 (4) 3 470 (4)	150 141
$N1 - H1C \cdots Cl3^{ii}$	0.89	2.52	3.349 (4)	156
$N2 - H2A \cdot \cdot \cdot Cl2^{i}$	0.89	2.72	3.476 (5)	144
$N2 - H2B \cdot \cdot \cdot Cl1^n$	0.89	2.85	3.659 (5)	151
$N2 - H2C \cdots Cl3$ $N3 - H3A \cdots Cl1^{iv}$	0.89	2.73	3.376 (5)	131
$N3-H3B\cdots Cl2$	0.89	2.74	3.602 (4)	163
$N3-H3C\cdots Cl1^{v}$	0.89	2.69	3.504 (5)	153

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, y, 1 + z; (iv) -x, 1 - y, 1 - z; (v) -x, -y, 1 - z.

Atomic parameters were obtained for the H atoms using the HFIX 133 instruction in *SHELXL*97 (Sheldrick, 1997). Interatomic distances and angles for the hydrogen bonding were generated using the HTAB instruction.

Data collection: *IPDS Software* (Stoe & Cie, 1996–1997); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, within the frame of the special programme 'Reaktivität von Festkörpern'. We are equally grateful to the State of Nordrhein-Westfalen and the Universität zu Köln for excellent equipment and conditions for our research.

References

Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.

Bremm, S. & Meyer, G. (2001). Z. Anorg. Allg. Chem. 627, 407-410.

Jacobs, H. & Nöcker, B. (1992). Z. Anorg. Allg. Chem. 614, 25-29.

Jacobs, H. & Nöcker, B. (1993). Z. Anorg. Allg. Chem. 619, 73-76.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1996-1997). IPDS Software. Stoe & Cie, Darmstadt, Germany.